Introduction to Probabilistic Programming Maria Han Veiga Al in Science and Engineering Summer Academy 2023

· 337 915 67 837

366.06

661.4

608.09231.864

7 107693

About me

Fall 2023: (Incoming) Assistant Professor, Dpt. of Mathematics, OSU
2020 - now: Postdoctoral Fellow at MIDAS, UofM
2021 - 2023: Assistant Professor, Dpt. of Mathematics, UofM
2015 - 2019: PhD in Mathematics, University of Zurich

Interests:

Numerical analysis for PDEs/ODEs Scientific Machine Learning Reinforcement Learning

Session structure

INSTITUTE INSTITUTE INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

- Part 1: Theoretical concepts for Bayesian inference
 1. Introduction to Bayesian inference
 2. Exact inference and sampling
 3. Approximate inference with variational inference
- Part 2: Deep dive into existing programming frameworks
 1. Revisiting examples
 2. Pyro framework

Data generating process with unknown parameter(s) θ

Tossing a coin Probability of 'head'

Observed data $\{d_i\}_{i=1}^N$

Outcomes of coin toss

Data generating process with unknown parameter(s) θ

Tossing a coin

Probability of 'head'

Observed data $\{d_i\}_{i=1}^N$

Outcomes of coin toss

Spread and prevalence of X virus Infection rate, recovery rate

Number of infected patients

Data generating process with unknown parameter(s) θ

Tossing a coin

Probability of 'head'

Observed data $\{d_i\}_{i=1}^N$

Spread and prevalence of X virus Infection rate, recovery rate

Neural network Weights and biases

Outcomes of coin toss

Number of infected patients

Observed labels

Data generating process with unknown parameter(s) θ

Observed data $\{d_i\}_{i=1}^N$

Given a (model of a) data generating process and observed data, what are the parameters θ ?

Tossing a coin Probability of 'head' Spread and prevalence of X virus Infection rate, recovery rate

Neural network Weights and biases

Outcomes of coin toss

Number of infected patients

Observed labels

Question of interest:

INSTITUTE INSTITUTE INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

- We can perform point estimates of the parameters θ (e.g. Maximum Likelihood estimation)
 - Disadvantage: hard to come up with confidence intervals for the parameters
- Let the parameter be a random variable (RV) and describe the distribution of that RV

Intro to Bayesian Inference

*****2**77_094

31850

30

958-98997 Ccc 358-163

366.06

661,555,49 661,555,49

177601093 603-09231-864

- A

971-75600-832*** 162-80 866,016 ZUU 200-96 485-276 163:683

What is Bayesian statistics?

Thomas Bayes (1701-1761) What a BAyE!

- Bayesian statistics gives a way to integrate prior information with data to draw inferences
- Probabilities are subjective measures of uncertainty
- Data and parameters are represented by random variables

• Data and parameters are represented by random variables. The data is observed, whereas the parameters are not.

- Data and parameters are represented by **random variables**. The data is observed, whereas the parameters are not.
- A model $p(d \mid \theta)$ for the data generating process (also called likelihood) is specified. This process depends on some unknown parameters θ

- Data and parameters are represented by **random variables**. The data is observed, whereas the parameters are not.
- A model $p(d \mid \theta)$ for the data generating process (also called likelihood) is specified. This process depends on some unknown parameters θ
- Information that we might have about the unknown parameters θ is represented by a prior probability distribution $p(\theta)$

INSTITUTE INSTITUTE INTERSITY OF MICHIGAN

- Data and parameters are represented by **random variables**. The data is observed, whereas the parameters are not.
- A model $p(d \mid \theta)$ for the data generating process (also called likelihood) is specified. This process depends on some unknown parameters θ
- Information that we might have about the unknown parameters θ is represented by a prior probability distribution $p(\theta)$
- Bayesian inference uses *Bayes theorem* to combine the **prior** with the **observed data** to obtain a **posterior probability distribution for the parameters** $p(\theta | d)$.

Bayes' theorem:

Let $A, B \in \mathcal{F}$ such that p(A), p(B) > 0. The Bayes' theorem states $p(B|A) = \frac{p(B)p(A|B)}{p(A)}.$

Bayes' theorem:

- In the context of Bayesian inference:

 - B represents your *a priori* beliefs of the world. • A is some observation related to that belief. • This tells us how to update our beliefs about B, given A (a)
 - posteriori)

INTERVIEW OF MICHIGAN INSTITUTE

Let $A, B \in \mathcal{F}$ such that p(A), p(B) > 0. The Bayes' theorem states $p(B|A) = \frac{p(B)p(A|B)}{p(A)}.$

- **Example:** \bullet
 - I want to estimate whether a coin is fair or not (probability of getting) ● "Head" is my parameter θ)
 - My prior belief is that my coin is fair, e.g. $\theta \sim \mathcal{N}(0.5, 0.1)$
 - I observe the data d, which is the number of heads after 6 tosses.
 - The true data generating process is $d \sim Bin(6, \theta^*)$
 - The likelihood computes $p(d | \theta = 0.5)$

 $p(\theta \mid d) = \frac{p(\theta)p(d \mid \theta)}{p(d)}$

- **Example:** \bullet
 - I want to estimate whether a coin is fair or not (probability of getting) ullet"Head" is my parameter θ)
 - My prior belief is that my coin is fair, e.g. $\theta \sim \mathcal{N}(0.5, 0.1)$
 - I observe the data d, which is the number of heads after 6 tosses.
 - The true data generating process is $d \sim Bin(6, \theta^*)$
 - The likelihood computes $p(d | \theta = 0.5)$

d = 4

 $p(\theta \mid d) = \frac{p(\theta)p(d \mid \theta)}{p(d)}$

Example: \bullet

- I want to estimate whether a coin is fair or not (probability of getting) ullet"Head" is my parameter θ)
 - My prior belief is that my coin is fair, e.g. $\theta \sim \mathcal{N}(0.5, 0.1)$
 - I observe the data d, which is the number of heads after 6 tosses.
 - The true data generating process is $d \sim Bin(6, \theta^*)$
 - The likelihood computes $p(d | \theta = 0.5)$

d = 4

 $p(\theta \mid d) = \frac{p(\theta)p(d \mid \theta)}{p(d)}.$

Example: \bullet

- I want to estimate whether a coin is fair or not (probability of getting) ullet"Head" is my parameter θ)
 - My prior belief is that my coin is fair, e.g. $\theta \sim \mathcal{N}(0.5, 0.1)$
 - I observe the data d, which is the number of heads after 6 tosses.
 - The true data generating process is $d \sim Bin(6, \theta^*)$
 - The likelihood computes $p(d | \theta = 0.5)$

$$p(\theta \,|\, d) = \frac{p(\theta)p(d \,|\, \theta)}{p(d)}$$

$\theta^* = 0.3 \approx \theta$

Wait a minute...

• What about the denominator p(d)?

Wait a minute...

- What about the denominator p(d)?
 - Assume θ is a discrete RV, then we can decompose it: • $p(d) = p(d | \theta)p(\theta) + p(d | \theta^{c})p(\theta^{c})$
 - not, and the prior probability we assign to our beliefs.
 - generality...

DAS MICHIGAN INSTITUTE INTERVIEW OF MICHIGAN

• We can compute p(d) according to whether our beliefs are true or

• If θ continuous, we must integrate over all possible θ . We will see this in general is a quantity that is intractable to compute in full

- **Data** $d = (d_1, ..., d_n)$
- True generating process $f(\theta^*)$
- Parameters $\theta = (\theta_1, \dots, \theta_m)$
- Prior distribution $p(\theta) = p(\theta_1, \dots, \theta_m)$
- Model or likelihood function $p(d \mid \theta)$
- **Posterior distribution** $p(\theta | d)$

INTERSITY OF MICHIGAN

- **Data** $d = (d_1, ..., d_n)$
- True generating process $f(\theta^*)$
- Parameters $\theta = (\theta_1, \dots, \theta_m)$
- Prior distribution $p(\theta) = p(\theta_1, \dots, \theta_m)$
- Model or likelihood function $p(d \mid \theta)$
- Posterior distribution $p(\theta | d)$

INTERVIEW OF MICHIGAN INSTITUTE

Observable

- **Data** $d = (d_1, ..., d_n)$ Ob
- True generating process $f(\theta^*)$
- Parameters $\theta = (\theta_1, \dots, \theta_m)$
- Prior distribution $p(\theta) = p(\theta_1, \dots, \theta_m)$
- Model or likelihood function $p(d | \theta)$
- **Posterior distribution** $p(\theta | d)$

INTERSITY OF MICHIGAN

Observable

Modelling choices

- **Data** $d = (d_1, ..., d_n)$ O
- True generating process $f(\theta^*)$
- Parameters $\theta = (\theta_1, \dots, \theta_m)$
- Prior distribution $p(\theta) = p(\theta_1, \dots, \theta_m)$
- Model or likelihood function $p(d | \theta)$
- Posterior distribution $p(\theta | d)$

INTERVIEWERSITY OF MICHIGAN

- **Data** $d = (d_1, ..., d_n)$
- True generating process $f(\theta^*)$
- Parameters $\theta = (\theta_1, \dots, \theta_m)$
- Prior distribution $p(\theta) = p(\theta_1, \dots, \theta_m)$
- Model or likelihood function $p(d | \theta)$
- Posterior distribution $p(\theta | d)$

INTERVIEWERSITY OF MICHIGAN

INTERVIEW OF MICHIGAN INSTITUTE

- **Data** $d = (d_1, ..., d_n)$ Obs
- True generating process $f(\theta^*)$
- Parameters $\theta = (\theta_1, \dots, \theta_m)$
- Prior distribution $p(\theta) = p(\theta_1, \dots, \theta_m)$
- Model or likelihood function $p(d | \theta)$
- Posterior distribution $p(\theta \mid d)$

Remark: We assumed the likelihood function and the true generating process are the same distribution, up to the parameter θ . In reality, we might don't know the function form of the true generating process, it might not even depend on parameters θ . This is called **model misspecification**.

Observable $f(\theta^*)$ θ_m $p(\theta_1, \dots, \theta_m)$ $p(\theta_1, \dots, \theta_m)$ tion $p(d \mid \theta)$ $\theta \mid d$ Computed quantity of interest

Beyond parameter inference: posterior predictive

- Consider a new data sample d
- Find $p(\tilde{d} | d)$, the probability of the new data given our current data d:

 $p(\tilde{d} | d) = \int p(\tilde{d} | \theta, d) p(\theta | d) d\theta$

(By independence of d and d)

```
= \int p(\tilde{d} | \theta) p(\theta | d) d\theta
```


Beyond parameter inference: posterior predictive

- Consider a new data sample d
- Find $p(\tilde{d} | d)$, the probability of the new data given our current data d:

 $p(\tilde{d} | d) = \int p(\tilde{d} | \theta, d) p(\theta | d) d\theta$

(By independence of d and d)

```
= \int p(\tilde{d} | \theta) p(\theta | d) d\theta
```


Beyond parameter inference: posterior predictive

- Consider a new data sample \tilde{d}
- Find $p(\tilde{d} | d)$, the probability of the new data given our current data d: $p(\tilde{d} | d) = \int_{\Omega} p(\tilde{d} | \theta, d) \frac{p(\theta | d)}{\theta} d\theta$
- p(d | d) is the **posterior predictive distribution** and it can be used to:
 - Forecast

INSTITUTE INSTITUTE INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

(By independence of d and d)

$$= \int_{\Theta} p(\tilde{d} | \theta) p(\theta | d) d\theta$$

Check model (likelihood function) correctness: if the data we did observe follows this pattern closely, it indicates we chose our model / likelihood and prior well.

How to solve Bayesian inference problems?

• Exactly

INTERVIEWERSITY OF MICHIGAN

- Through sampling
- Approximately

Exact inference & Sampling

*****2**77_094

31850

30

958-98997 Ccc 358-163

366.06

661,555,49 661,555,49

177601093 603-09231-864

- A

971-75600-832*** 162-80 866,016 ZUU 200-96 485-276 163:683

Exact inference

Recall Bayes' theorem: $p(\theta | X = d) = \frac{p(X = d | \theta) \times p(\theta)}{p(X = d)}$

Exact inference

Computing the denominator:

$$p(X = d) = \int_{\Theta} p(X = d | \theta) \times p(\theta)$$

is not always straightforward:

INSTITUTE INTERSITY OF MICHIGAN

- \implies computationally intractable
- Generally solve integral approximately • If $\vec{\theta} = (\theta_1, \dots, \theta_n)$, integrate over n-dimensional parameter space

Recall Bayes' theorem: $p(\theta | X = d) = \frac{p(X = d | \theta) \times p(\theta)}{p(X = d)}$

θ)d θ

Exact inference

- In some case, we can write a closed-form expression for the posterior using conjugate priors
- For some likelihood functions, there exists a prior such that the posterior is the same as \bullet the prior (up to parameters)

Example:			
Likelihood function	Model parameters	Conjugate Prior	Posteriori
$p(\mathbf{x} \theta)$	θ	p(heta)	$p(\theta \mathbf{x})$
Gaussian	μ (mean)	Gaussian	Gaussian
Gaussian	σ^2 (variance)	Inverse Gamma	Inverse Gamma
Exponential	λ (rate)	Gamma	Gamma
Binomial	p (success prob.)	Beta	Beta
Geometric	p (success prob.)	Beta	Beta
Poisson	λ (mean)	Gamma	Gamma

F----

Coin example

- Let the prior $p(\theta)$ be given by a Beta distribution $\text{Beta}(\alpha_0, \beta_0)$
- The likelihood is again $d \sim Bin(6, \theta^*)$
- Let observed data be: d = 2 (2 heads out of 6 tosses)
- Posterior is also a Beta distribution $\text{Beta}(\alpha_0 + d, \beta_0 + 6 d)$

INTERVIEW OF MICHIGAN INSTITUTE

a Beta distribution $\text{Beta}(\alpha_0, \beta_0)$ $n(6, \theta^*)$ heads out of 6 tosses) $n(6, \theta^*)$ $n(6, \theta^*)$ $n(6, \theta^*)$

Exact inference

- Disadvantage:
 - At most 1-dimensional or 2-dimensional
 - Rigid form for the prior and likelihood
 - high-dimensional problems

Not useful for general prior/likelihood choices and

Ice breaker: What problems in your research you could use these ideas?

661,555,59 661,555,59

958-98997 C = 258-16

JU 1.08

366.06

17401693 600.09231664

971-75600-832 - 162-46

Sampling

Idea:

Question:

How?

 Draw independent samples from this urn By sampling we can characterise the distribution of the ball distribution

• If we can't compute $p(\theta | d)$ explicitly, can we sample from it, to then characterise the posterior?

Characterising the posterior through sampling

• Sampling from $p(\theta | d)$ is difficult. What if all we can do is evaluate something related to $p(\theta | d)$? Namely:

• (Handwavy) Let $p(\theta | d)$ be our target distribution, we can use a candidate distribution $w(\theta)$ that is easy to handle to help with the sampling

 $p(\theta \mid d) \propto p(d \mid \theta) \times p(\theta)$

Characterising the posterior through sampling

- to sample from a probability distribution.
- We need a few key concepts to generally understand the algorithm.

Markov Chain Monte Carlo methods are a class of algorithms

Markov Chain

• A stochastic process $X = \{X_n : n \ge 0\}$ is a Markov chain if for any state]:

$$P(X_{n+1} = j | X_n, \dots, X_0) = P(X_{n+1} = j | X_n)$$

- $P(X_{n+1} = j | X_n = i) = p_{ij}$ denotes the transition probability of passing from state *i* to state *j*.
- Let P denote the transition probabilities matrix
- π_n denotes the state distribution in the *n* step

INSTITUTE INSTITUTE INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

• The probability distribution of states evolves as $\pi_1 = P \pi_0$, and so on... • Let $P\pi^* = \pi^*$. Then π^* is the stationary distribution of the Markov Chain.

The basic limit theorem for Markov chains, under some assumptions, gives:

 $||\pi^* - \pi_n$

• The probability distribution of states evolves as $\pi_1 = P \pi_0$, and so on... • Let $P\pi^* = \pi^*$. Then π^* is the stationary distribution of the Markov Chain.

$$n_n | | \to 0, \quad n \to \infty$$

The basic limit theorem for Markov chains, under some assumptions, gives:

 $|\pi^* - \pi_n|$

approach the stationary distribution π^* .

INSTITUTE INSTITUTE INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

• The probability distribution of states evolves as $\pi_1 = P \pi_0$, and so on... • Let $P\pi^* = \pi^*$. Then π^* is the stationary distribution of the Markov Chain.

$$_n | | \rightarrow 0, \quad n \rightarrow \infty$$

No matter where we start the Markov Chain, π_n will eventually

The basic limit theorem for Markov chains, under some assumptions, gives:

 $||\pi^* - \pi_n|$

approach the stationary distribution π^* .

DAS MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

Key idea: Let this stationary distribution π^* the target distribution

• The probability distribution of states evolves as $\pi_1 = P \pi_0$, and so on... • Let $P\pi^* = \pi^*$. Then π^* is the stationary distribution of the Markov Chain.

$$_n | | \rightarrow 0, \quad n \rightarrow \infty$$

No matter where we start the Markov Chain, π_n will eventually

Metropolis-Hastings algorithm (1953):

- Let $w(\theta | \theta')$ be the transition density and $p(\theta | d)$ the target density
- Given state θ , sample a candidate value $\theta' \sim w(\theta' | \theta)$
- Compute the acceptance ratio:

 $\alpha(\theta'|\theta) = \min\left\{\frac{p(\theta'|d)w(\theta|\theta')}{p(\theta|d)w(\theta'|\theta)}, 1\right\}$ • Sample $u \sim U(0,1)$. If $u \leq \alpha(\theta'|\theta)$, then the next state is equal to $\theta_{n+1} = \theta'$. Otherwise,

• Sample $u \sim U(0,1)$. If $u \leq \alpha(\theta' | \theta)$, t the next state remains θ_n .

nd $p(\theta \mid d)$ the target density $e \ \theta' \sim w(\theta' \mid \theta)$

Metropolis-Hastings algorithm (1953):

- Let $w(\theta | \theta')$ be the transition density and $p(\theta | d)$ the target density
- Given state θ , sample a candidate value $\theta' \sim w(\theta' | \theta)$
- Compute the acceptance ratio:

 $\alpha(\theta' | \theta) = \text{mi}$

• Sample $u \sim U(0,1)$. If $u \leq \alpha(\theta' | \theta)$, the next state remains θ_n .

If $\alpha(\theta' | \theta)$ is symmetric, and plugging in the definition $\alpha(\theta' | \theta) = \min \left\{ \frac{p(d | \theta')p(\theta')}{p(d | \theta)p(\theta)}, \frac{p(d | \theta)p(\theta)}{p(d | \theta)p(\theta)} \right\}$

INSTITUTE INSTITUTE INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN nd $p(\theta \mid d)$ the target density $e \; \theta' \sim w(\theta' \mid \theta)$

$$\left\{ \begin{array}{l} \frac{p(\theta' \mid d) w(\theta \mid \theta')}{p(\theta \mid d) w(\theta' \mid \theta)}, 1 \\ \end{array} \right\}$$
 hen the next state is equal to $\theta_{n+1} = \theta'$. Otherwise

of the posterior, we have:
$$\left\{ ,1 \right\}$$

Metropolis-Hastings algorithm (1953):

- Let $w(\theta | \theta')$ be the transition density and $p(\theta | d)$ the target density
- Given state θ , sample a candidate value $\theta' \sim w(\theta' | \theta)$
- Compute the acceptance ratio:

 $\alpha(\theta' | \theta) = \text{mi}$

• Sample $u \sim U(0,1)$. If $u \leq \alpha(\theta' | \theta)$, the next state remains θ_n .

If $\alpha(\theta' | \theta)$ is symmetric, and plugging in the definition $\alpha(\theta' | \theta) = \min \left\{ \frac{p(d | \theta')p(\theta')}{p(d | \theta)p(\theta)}, \frac{p(d | \theta)p(\theta)}{p(d | \theta)p(\theta)} \right\}$

INTERVIEWERSITY OF MICHIGAN

nd $p(\theta \mid d)$ the target density $e \; \theta' \sim w(\theta' \mid \theta)$

$$\left\{ \begin{array}{l} \frac{p(\theta' \mid d)w(\theta \mid \theta')}{p(\theta \mid d)w(\theta' \mid \theta)}, 1 \end{array} \right\}$$
 hen the next state is equal to $\theta_{n+1} = \theta'$. Otherwise

of the posterior, we have:
$$\left\{,1\right\}$$

The p(d) term cancels out!

Metropolis-Hastings algorithm (1953):

- Let $w(\theta | \theta')$ be the transition density and $p(\theta | d)$ the target density
- Given state θ , sample a candidate value $\theta' \sim w(\theta' | \theta)$
- Compute the acceptance ratio:

 $\alpha(\theta' | \theta) = \text{mi}$

• Sample $u \sim U(0,1)$. If $u \leq \alpha(\theta' | \theta)$, the set of $u \leq \alpha(\theta' | \theta)$ is the set of $u \leq \alpha(\theta' | \theta)$. the next state remains θ_n .

If $\alpha(\theta' \mid \theta)$ is symmetric, and plugging in the definition $\alpha(\theta' | \theta) = \min \left\{ \frac{p(d | \theta')p(\theta')}{p(d | \theta)p(\theta)}, \right.$

INTERVIEW AND AS MICHIGAN INSTITUTE UNIVERSITY OF MICHIGAN

$$\left\{ \begin{array}{l} \frac{p(\theta' \mid d) w(\theta \mid \theta')}{p(\theta \mid d) w(\theta' \mid \theta)}, 1 \end{array} \right\}$$
 hen the next state is equal to $\theta_{n+1} = \theta'$. Otherwise,

of the posterior, we have:
$$\left\{,1\right\}$$

The p(d) term cancels out!

We sample from likelihood x prior, the unnormalised posterior

- proportional to it: we only know $f(x) \propto p(x)$
- posterior: $p(d \mid \theta) \times p(\theta)$

The Metropolis-Hastings algorithm: a way to obtain a sequence of random samples from a probability distribution with some density p(x) while knowing only some function

In the context of posterior estimation, allows us to sample from the **unnormalised**

Example

Again, let's look at the coin flip:

- Prior $p(\theta) \sim Beta(10,10)$
- Let $\theta' = \theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, 0.1)$
- Then, $w(\theta' | \theta)$ is given by the distribution of ε
- Acceptance ratio:

 $\alpha(\theta' | \theta) = \min\left\{\frac{p(d | \theta')p(\theta')}{p(d | \theta)p(\theta)}, 1\right\}$

(symmetry of ε)

• $u \sim U(0,1)$

INTERVIEW OF MICHIGAN INSTITUTE

• If $u < \alpha$, $\theta_{n+1} = \theta'$, else $\theta_{n+1} = \theta_n$

Example

Again, let's look at the coin flip:

- Prior $p(\theta) \sim Beta(10,10)$
- Let $\theta' = \theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, 0.1)$
- Then, $w(\theta' | \theta)$ is given by the distribution of ε
- Acceptance ratio:

 $\alpha(\theta' | \theta) = \min \left\{ \frac{p(d | \theta')p(\theta')}{p(d | \theta)p(\theta)}, 1 \right\}$

(symmetry of ε)

• $u \sim U(0,1)$

INTERVIEW OF MICHIGAN INSTITUTE

• If $u < \alpha$, $\theta_{n+1} = \theta'$, else $\theta_{n+1} = \theta_n$

Example

Again, let's look at the coin flip:

- Prior $p(\theta) \sim Beta(10,10)$
- Let $\theta' = \theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, 0.1)$
- Then, $w(\theta' | \theta)$ is given by the distribution of ε
- Acceptance ratio:

 $\alpha(\theta' | \theta) = \min\left\{\frac{p(d | \theta')p(\theta')}{p(d | \theta)p(\theta)}, 1\right\}$

(symmetry of ε)

• $u \sim U(0,1)$

INTERVIEW OF MICHIGAN INSTITUTE

• If $u < \alpha$, $\theta_{n+1} = \theta'$, else $\theta_{n+1} = \theta_n$

- We have an assumption that at some point we reach the stationary distribution.
- In the beginning of the chain, this is not the case — *burn-in* period.

Markov Chain Monte Carlo Convergence

- Analytical upper bound for number of iterations to distance to stationarity (Rosenthal 2002). I.e. How long is the burn-in phase?
- parameter mean (Jones and Hobert, 2001)
- Analytical bounds on the MCMC mean/variance and true • Eventually, we sample from the true posterior distribution.

• Advantages:

- Easy to implement
- Better at handling high-dimensional parameter spaces • Produces samples from the target distribution (asymptotically)

• Disadvantages:

INSTITUTE INSTITUTE INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

- Can be computationally costly to go to very high-dimensional problems/large datasets
- Requires careful fine-tuning of parameters: step-size, proposal distribution, etc...

Questions?

661,555,49 661,555,49

958.98977 2 6 358 163

001.000

366.06

377.624 ···· 971.25

731-850

39

17 hoxega 603.0923 1.864

an N

200.9678

971-75600.832** 162-49 200. 485.276 163.683 18.372.9/

Approximate inference through Variational inference

661,555,59 661,555,59

958-989-972 Ec 358-16

366.06

17461693 608-09231-864

971-75600-832 = 162-46

Variational inference

- When computing $p(\theta \mid d)$ is intractable • E.g. many parameters θ
- Idea: Replace the exact, but intractable posterior $p(\theta \mid d)$ with a tractable approximate posterior $q(\theta \mid d)$

Variational inference

- Let $q(\theta \mid d)$ belong to a family of probability distributions Q
- Solve the optimisation problem: $q^*(\theta) := \arg\min_{q\in \mathcal{Q}} \textit{KL}(q \,|\, p)$

INSTITUTE INSTITUTE INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

• We seek $q(\theta | d)$ that approximates the posterior $p(\theta | d)$.

Quick detour: KL divergence

 Kullback-Leibler (KL) divergence is a measure of dissimilarity between two probability distributions.

Let X and Y be two random variables with support R_X and R_Y and probability density functions $p_X(x)$ and $p_Y(y)$. Let $R_X \subseteq R_Y$. Then, the KL divergence of $p_{Y}(y)$ from $p_{X}(x)$ is

$$KL(p_X | p_Y) = \mathbb{E}_{x \sim X} \left| \ln \right|$$

$$\left(\frac{p_X(x)}{p_Y(y)}\right)\right].$$

Quick detour: KL divergence

 Kullback-Leibler (KL) divergence is a measure of dissimilarity between two probability distributions.

Let X and Y be two random variables with support R_X and R_Y and probability density functions $p_X(x)$ and $p_Y(y)$. Let $R_X \subseteq R_Y$. Then, the KL divergence of $p_{Y}(y)$ from $p_{X}(x)$ is

$$KL(p_X | p_Y) = \mathbb{E}_{x \sim X} \left| \ln \right|$$

• KL divergence is non-negative • If $KL(p | q) = 0 \implies p = q$

INTERVIEW OF MICHIGAN INSTITUTE

$$\left(\frac{p_X(x)}{p_Y(y)}\right)\right].$$

Variational inference

 $q_0(\theta \,|\, d)$

• If $p(\theta | d) \in Q$, then $q^*(\theta | d) = p(\theta | d)$ (under some assumptions).

Q

Variational inference

If $p(\theta | d) \notin Q$, then $q^*(\theta | d)$ minimises the Kullback-Leibler divergence between the two distributions.

How to solve the minimisation?

 $q_{\lambda}(\theta) := \arg\min_{q \in \mathcal{Q}} KL(q \mid p) \iff \arg\max_{q \in \mathcal{Q}} ELBO(q, \theta)$

How to solve the minimisation?

$$q_{\lambda}(\theta) := \arg\min_{q \in \mathcal{Q}} KL(q)$$
$$KL(q \mid p) = E_{\theta \sim q} \left[\ln\left(\frac{q(\theta \mid d)}{p(\theta \mid d)}\right) \right]$$
$$= E_{\theta \sim q} \left[\ln\left(q(\theta \mid d)\right) \right]$$
$$= E_{\theta \sim q} \left[\ln\left(q(\theta \mid d)\right) \right]$$
$$= E_{\theta \sim q} \left[\ln\left(q(\theta \mid d)\right) \right]$$
$$= -\left(E_{\theta \sim q} \left[\ln\left(p(\theta, d)\right) \right] \right]$$

INTERVIEW OF MICHIGAN INSTITUTE

 $q|p) \iff \arg \max ELBO(q,\theta)$ $q \in Q$ $-E_{\theta \sim q} \left| \ln \left(p(\theta \,|\, d) \right) \right| \qquad \text{Log properties}$ $-E_{\theta \sim q} \left| \ln \left(\frac{p(\theta, d)}{p(d)} \right) \right|$ Definition of posterior $-E_{\theta \sim q} \left| \ln \left(p(\theta, d) \right) \right| + E_{\theta \sim q} \left[\ln(p(d)) \right]$ Log properties $d)\Big] - E_{\theta \sim q} \left[\ln \left(q(\theta | d) \right) \right] + \ln(p(d))$ Independence of θ and d

How to solve the minimisation?

INTERVIEWERSITY OF MICHIGAN

$$\begin{split} q_{\lambda}(\theta) &:= \arg\min_{q \in \mathcal{Q}} KL(q \mid p) \iff \arg\max_{q \in \mathcal{Q}} \overline{ELBO(q, \theta)} \\ KL(q \mid p) &= E_{\theta \sim q} \left[\ln\left(\frac{q(\theta \mid d)}{p(\theta \mid d)}\right) \right] \\ &= E_{\theta \sim q} \left[\ln\left(q(\theta \mid d)\right) \right] - E_{\theta \sim q} \left[\ln\left(p(\theta \mid d)\right) \right] \quad \text{Log properties} \\ &= E_{\theta \sim q} \left[\ln\left(q(\theta \mid d)\right) \right] - E_{\theta \sim q} \left[\ln\left(\frac{p(\theta, d)}{p(d)}\right) \right] \quad \text{Definition of posterior} \\ &= E_{\theta \sim q} \left[\ln\left(q(\theta \mid d)\right) \right] - E_{\theta \sim q} \left[\ln\left(p(\theta, d)\right) \right] + E_{\theta \sim q} \left[\ln(p(d)) \right] \quad \text{Log properties} \\ &= - \left(\left(E_{\theta \sim q} \left[\ln\left(p(\theta, d)\right) \right] - E_{\theta \sim q} \left[\ln\left(q(\theta \mid d)\right) \right] \right) + \ln(p(d)) \quad \text{Independence of } \theta \in e^{-1} \\ &= E^{\text{Vidence Lower Bound (ELBO)} \end{split}$$

Variational inference

- Formulate the approximate Bayesian inference problem as an optimisation problem ⇒ use optimisation tools to solve the inference problem
 - e.g. Use gradient descent-like method

What can be said of Q?

- Mean field approximation: \bullet
 - Assume the variational distribution over the parameters θ factorizes as:

- Assumes the parameters are independent from each other
- Usually $p(\theta | d) \notin Q$

 $q(\theta_1, \cdots, \theta_m) = \prod q(\theta_j)$

What can be said of **Q**?

- Mean field approximation: \bullet
 - Assume the variational distribution over the parameters θ factorizes as:

- Usually $p(\theta | d) \notin Q$
- **Fixed form approximation:** lacksquare
 - vector λ (variational parameter)

Example 1: \mathcal{Q} := family of *n*-dimensional Gaussian distributions, variational parameters $\lambda :=$ vector of means $\mu \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$ **Example 2:** $\mathcal{Q} := d$ -deep neural network, variational parameters $\lambda :=$ weights and biases

DAS MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

 $q(\theta_1, \cdots, \theta_m) = \prod q(\theta_j)$ - Assumes the parameters are independent from each other

• Assume the variational distribution $q \in Q$, some class of distributions indexed by a

Example

Again, let's look at the coin flip. Let us consider $\mathcal{Q} := U(a, b)$, then, $p(\theta | d) \notin \mathcal{Q}$.

UNIVERSITY OF MICHIGAN

Example

Again, let's look at the coin flip. Let us consider $\mathcal{Q} := U(a, b)$, then, $p(\theta | d) \notin \mathcal{Q}$.

Let us consider $\mathcal{Q} := \text{Beta}(a, b)$, then, $p(\theta | d) \in \mathcal{Q}$.

What can be said about convergence?

- Not much.
 - On the convergence of the mean of the variational posterior to the true mean of the posterior: (Wang and Blei, 2021)
 - On the convergence of the variational posterior to true posterior distribution moments: (Zhang and Gao, 2020)
- We might never be close to the true posterior distribution.

Variational inference

- Advantages:
 - Scalable
 - Fast
- **Disadvantages:**
 - Little theory on convergence
 - Computationally complex

Summary

Dimensio

Conjugate priors Low Low Sampling High Variational inference

SN	Expressivity	Efficiency	Computat Complexi
	Low	High	Lov
	High	Low	Lov
	Varying	High	Hig

Break time Hands-on session: http://bit.ly/430LjUh

661,555,59 661,555,59

958-989-972 Ec 358-16

366.06

17461693 608-09231-864

Telf Startes 200585

971-75608-832 - 162-44 485-276-163-683