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Session structure
Part 1: Theoretical concepts for Bayesian inference


1. Introduction to Bayesian inference

2. Exact inference and sampling

3. Approximate inference with variational inference


Part 2: Deep dive into existing programming frameworks

1. Revisiting examples

2. Pyro framework
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Question of interest: 
 Given a (model of a) data generating process and observed data, what are the parameters ?θ



• We can perform point estimates of the parameters 
 (e.g. Maximum Likelihood estimation)


• Disadvantage: hard to come up with confidence 
intervals for the parameters 

• Let the parameter be a random variable (RV) and 
describe the distribution of that RV

θ



Intro	to	Bayesian	Inference



What is Bayesian statistics?
• Bayesian statistics gives a way to integrate 

prior information with data to draw 
inferences 

• Probabilities are subjective measures of 
uncertainty 

• Data and parameters are represented by 
random variables

Thomas Bayes (1701-1761)

What a BAyE!



Basic set-up
• Data and parameters are represented by random variables. The data is 

observed, whereas the parameters are not. 

• A model  for the data generating process (also called likelihood) is 
specified. This process depends on some unknown parameters 


• Information that we might have about the unknown parameters  is 
represented by a prior probability distribution  

• Bayesian inference uses Bayes theorem to combine the prior with the 
observed data to obtain a posterior probability distribution for the 
parameters .

p(d |θ)
θ

θ
p(θ)

p(θ |d)
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Bayes’ theorem:  

Let  such that . The Bayes’ theorem states


.

A, B ∈ ℱ p(A), p(B) > 0

p(B |A) =
p(B)p(A |B)

p(A)

• In the context of Bayesian inference:


• B represents your a priori beliefs of the world.

• A is some observation related to that belief.

• This tells us how to update our beliefs about B, given A (a 

posteriori)
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• Example: 

• I want to estimate whether a coin is fair or not (probability of getting 
“Head” is my parameter )

• My prior belief is that my coin is fair, e.g. 

• I observe the data , which is the number of heads after 6 tosses.


• The true data generating process is 

• The likelihood computes 

θ
θ ∼ 𝒩(0.5,0.1)

d
d ∼ Bin(6,θ*)

p(d |θ = 0.5)

d = 4

.p(θ |d) =
p(θ)p(d |θ)
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• Example: 

• I want to estimate whether a coin is fair or not (probability of getting 
“Head” is my parameter )

• My prior belief is that my coin is fair, e.g. 

• I observe the data , which is the number of heads after 6 tosses.


• The true data generating process is 

• The likelihood computes 

θ
θ ∼ 𝒩(0.5,0.1)

d
d ∼ Bin(6,θ*)

p(d |θ = 0.5)

d = 4

.p(θ |d) =
p(θ)p(d |θ)

p(d)

θ* = 0.3 ≈ θ̄

θ̄



Wait a minute…
• What about the denominator ?


• Assume  is a discrete RV, then we can decompose it:

• 


• We can compute  according to whether our beliefs are true or 
not, and the prior probability we assign to our beliefs.


• If  continuous, we must integrate over all possible . We will see 
this in general is a quantity that is intractable to compute in full 
generality…

p(d)

θ
p(d) = p(d |θ)p(θ) + p(d |θc)p(θc)

p(d)

θ θ



Wait a minute…
• What about the denominator ?


• Assume  is a discrete RV, then we can decompose it:

• 


• We can compute  according to whether our beliefs are true or 
not, and the prior probability we assign to our beliefs.


• If  continuous, we must integrate over all possible . We will see 
this in general is a quantity that is intractable to compute in full 
generality…

p(d)

θ
p(d) = p(d |θ)p(θ) + p(d |θc)p(θc)

p(d)

θ θ



Notation
• Data 

• True generating process 

• Parameters 

• Prior distribution 

• Model or likelihood function  

• Posterior distribution 

d = (d1, …, dn)
f(θ*)

θ = (θ1, ⋯, θm)
p(θ) = p(θ1, ⋯, θm)

p(d |θ)
p(θ |d)
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Notation
• Data 

• True generating process 

• Parameters 

• Prior distribution 

• Model or likelihood function  

• Posterior distribution 

d = (d1, …, dn)
f(θ*)

θ = (θ1, ⋯, θm)
p(θ) = p(θ1, ⋯, θm)

p(d |θ)
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Remark: We assumed the likelihood function and the true generating process are the 
same distribution, up to the parameter . In reality, we might don’t know the function 
form of the true generating process, it might not even depend on parameters . This 
is called model misspecification.

θ
θ



Beyond parameter inference: posterior predictive

• Consider a new data sample 

• Find , the probability of the new data given our current data :





•  is the posterior predictive distribution and it can be used to:

• Forecast

• Check model (likelihood function) correctness: if the data we did observe follows 

this pattern closely, it indicates we chose our model / likelihood and prior well.

d̃
p(d̃ |d) d

p(d̃ |d) = ∫Θ
p(d̃ |θ, d)p(θ |d)dθ

= ∫Θ
p(d̃ |θ)p(θ |d)dθ

p(d̃ |d)

(By independence of  and )d̃ d
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How to solve Bayesian inference problems?

• Exactly

• Through sampling

• Approximately



Exact	inference	&	Sampling



Exact inference
Recall Bayes’ theorem: 


Computing the denominator:





is not always straightforward:

• Generally solve integral approximately

• If , integrate over dimensional parameter space


 computationally intractable

p(θ |X = d) =
p(X = d |θ) × p(θ)

p(X = d)

p(X = d) = ∫Θ
p(X = d |θ) × p(θ)dθ

⃗θ = (θ1, . . . , θn) n−
⟹
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Exact inference
• In some case, we can write a closed-form expression for the posterior using conjugate 

priors

• For some likelihood functions, there exists a prior such that the posterior is the same as 

the prior (up to parameters)



Coin example
• Let the prior  be given by a Beta distribution 

• The likelihood is again 

• Let observed data be: d = 2 (2 heads out of 6 tosses)

• Posterior is also a Beta distribution 

p(θ) Beta(α0, β0)
d ∼ Bin(6,θ*)

Beta(α0 + d, β0 + 6 − d)



Exact inference
• Disadvantage: 
• At most 1-dimensional or 2-dimensional

• Rigid form for the prior and likelihood

• Not useful for general prior/likelihood choices and 

high-dimensional problems



Ice	breaker:	What	problems	in	your	research	you	
could	use	these	ideas?



Sampling
 Idea: 
• Draw independent samples from this urn 

• By sampling we can characterise the distribution of 

the ball distribution

 

Question: 
• If we can’t compute  explicitly, can we 

sample from it, to then characterise the posterior? 
How?


p(θ |d)



Characterising the posterior through sampling

• Sampling from  is difficult. What if all we can do is evaluate 
something related to ? Namely:





• (Handwavy) Let  be our target distribution, we can use a candidate 
distribution  that is easy to handle to help with the sampling


p(θ |d)
p(θ |d)

p(θ |d) ∝ p(d |θ) × p(θ)

p(θ |d)
w(θ)



• Markov Chain Monte Carlo methods are a class of algorithms 
to sample from a probability distribution.


• We need a few key concepts to generally understand the 
algorithm.


Characterising the posterior through sampling



Markov Chain
• A stochastic process  is a Markov chain if for any state 

:





•  denotes the transition probability of passing 
from state  to state .


• Let  denote the transition probabilities matrix

•  denotes the state distribution in the  step

X = {Xn : n ≥ 0}
j

P(Xn+1 = j |Xn, ⋯, X0) = P(Xn+1 = j |Xn)

P(Xn+1 = j |Xn = i) = pij
i j

P
πn n



Stationary distribution
• The probability distribution of states evolves as , and so on…

• Let . Then  is the stationary distribution of the Markov Chain.


π1 = Pπ0
Pπ* = π* π*

No matter where we start the Markov Chain,  will eventually 
approach the stationary distribution .

πn
π*
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Stationary distribution
• The probability distribution of states evolves as , and so on…

• Let . Then  is the stationary distribution of the Markov Chain.


π1 = Pπ0
Pπ* = π* π*

The basic limit theorem for Markov chains, under some assumptions, 
gives:



| |π* − πn | | → 0, n → ∞

No matter where we start the Markov Chain,  will eventually 
approach the stationary distribution .

πn
π*

Key idea: Let this stationary distribution  the target distributionπ*



Markov Chain Monte Carlo
Metropolis-Hastings algorithm (1953):

• Let  be the transition density and  the target density

• Given state , sample a candidate value 

• Compute the acceptance ratio: 





• Sample  If , then the next state is equal to . Otherwise, 
the next state remains .

w(θ |θ′ ) p(θ |d)
θ θ′ ∼ w(θ′ |θ)

α(θ′ |θ) = min { p(θ′ |d)w(θ |θ′ )
p(θ |d)w(θ′ |θ)

,1}
u ∼ U(0,1) . u ≤ α(θ′ |θ) θn+1 = θ′ 

θn

If  is symmetric, and plugging in the definition of the posterior, we have:
α(θ′ |θ)
α(θ′ |θ) = min { p(d |θ′ )p(θ′ )

p(d |θ)p(θ)
,1}
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We sample from likelihood x 
prior, the  

unnormalised posterior



Markov Chain Monte Carlo
• The Metropolis-Hastings algorithm: a way to obtain a sequence of random samples 

from a probability distribution with some density  while knowing only some function 
proportional to it: we only know 


• In the context of posterior estimation, allows us to sample from the unnormalised 
posterior:  

p(x)
f(x) ∝ p(x)

p(d |θ) × p(θ)



Example
Again, let’s look at the coin flip:

• Prior 

• Let , 

• Then,  is given by the 

distribution of 

• Acceptance ratio: 

 

(symmetry of ) 

• 

• If  , else 

p(θ) ∼ Beta(10,10)
θ′ = θ + ε ε ∼ 𝒩(0,0.1)

w(θ′ |θ)
ε

α(θ′ |θ) = min { p(d |θ′ )p(θ′ )
p(d |θ)p(θ)

,1}
ε

u ∼ U(0,1)
u < α, θn+1 = θ′ θn+1 = θn
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• We have an assumption that at 
some point we reach the stationary 
distribution.


• In the beginning of the chain, this is 
not the case — burn-in period.

Markov Chain Monte Carlo



• Analytical upper bound for number of iterations to 
distance to stationarity (Rosenthal 2002). I.e. How long is 
the burn-in phase?


• Analytical bounds on the MCMC mean/variance and true 
parameter mean (Jones and Hobert, 2001)


• Eventually, we sample from the true posterior distribution.

Markov Chain Monte Carlo Convergence



Markov Chain Monte Carlo
• Advantages: 
• Easy to implement

• Better at handling high-dimensional parameter spaces

• Produces samples from the target distribution (asymptotically) 


• Disadvantages: 
• Can be computationally costly to go to very high-dimensional 

problems/large datasets

• Requires careful fine-tuning of parameters: step-size, 

proposal distribution, etc…



Questions?



Approximate	inference	through	Variational	
inference



Variational inference
• When computing  is intractable

• E.g. many parameters 


• Idea: Replace the exact, but intractable posterior 
 with a tractable approximate posterior 

p(θ |d)
θ

p(θ |d) q(θ |d)



• Let   belong to a family of probability distributions  

• Solve the optimisation problem:

 


• We seek  that approximates the posterior .

q(θ |d) 𝒬

q*(θ) := arg min
q∈𝒬

KL(q |p)

q(θ |d) p(θ |d)

Variational inference



• Kullback-Leibler (KL) divergence is a measure of 
dissimilarity between two probability distributions.

Quick detour: KL divergence

Let X and Y be two random variables with support  and  and 
probability density functions  and . Let . Then, 
the KL divergence of  from  is


 .

RX RY
pX(x) pY(y) RX ⊆ RY

pY(y) pX(x)

KL(pX |pY) = 𝔼x∼X [ln ( pX(x)
pY(y) )]

• KL divergence is non-negative

• If KL(p |q) = 0 ⟹ p = q
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Quick detour: KL divergence
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probability density functions  and . Let . Then, 
the KL divergence of  from  is
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• If , then  (under some 
assumptions).

p(θ |d) ∈ 𝒬 q*(θ |d) = p(θ |d)

Variational inference

𝒬
q*(θ |d) = p(θ |d)

q0(θ |d)



If , then  minimises the Kullback-Leibler 
divergence between the two distributions.

p(θ |d) ∉ 𝒬 q*(θ |d)

Variational inference

𝒬
p(θ |d)

q0(θ |d) q*(θ |d) min
q∈𝒬

KL(q |p)




qλ(θ) := arg min
q∈𝒬

KL(q |p) ⟺ arg max
q∈𝒬

ELBO(q, θ)

KL(q |p) = Eθ∼q [ln ( q(θ |d)
p(θ |d) )]

= Eθ∼q [ln (q(θ |d))] − Eθ∼q [ln (p(θ |d))]
= Eθ∼q [ln (q(θ |d))] − Eθ∼q [ln ( p(θ, d)

p(d) )]
= Eθ∼q [ln (q(θ |d))] − Eθ∼q [ln (p(θ, d))] + Eθ∼q [ln(p(d))]
= − (Eθ∼q [ln (p(θ, d))] − Eθ∼q [ln (q(θ |d))]) + ln(p(d))

How to solve the minimisation?

Log properties

Definition of posterior

Log properties

Independence of  and θ d

Evidence Lower Bound (ELBO)
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• Formulate the approximate Bayesian inference 
problem as an optimisation problem  use 
optimisation tools to solve the inference problem


• e.g. Use gradient descent-like method

⟹

Variational inference



• Mean field approximation: 
• Assume the variational distribution over the parameters  factorizes as:





• Assumes the parameters are independent from each other 

• Usually 


• Fixed form approximation: 
• Assume the variational distribution , some class of distributions indexed by a 

vector  (variational parameter)

θ
q(θ1, ⋯, θm) =

m

∏
j=1

q(θj)

p(θ |d) ∉ 𝒬

q ∈ 𝒬
λ

What can be said of ?𝒬

Example 1:  family of -dimensional Gaussian distributions, variational 
parameters vector of means  and covariance matrix 

Example 2:  -deep neural network, variational parameters weights 
and biases


𝒬 := n
λ := μ ∈ ℝn Σ ∈ ℝn×n

𝒬 := d λ :=
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Let us consider , then, .𝒬 := Beta(a, b) p(θ |d) ∈ 𝒬

Example
Again, let’s look at the coin flip.

Let us consider , then, .𝒬 := U(a, b) p(θ |d) ∉ 𝒬



Let us consider , then, .𝒬 := Beta(a, b) p(θ |d) ∈ 𝒬

Example
Again, let’s look at the coin flip.

Let us consider , then, .𝒬 := U(a, b) p(θ |d) ∉ 𝒬



What can be said about convergence?
• Not much.

• On the convergence of the mean of the variational posterior to the true mean 

of the posterior: (Wang and Blei, 2021)

• On the convergence of the variational posterior to true posterior distribution 

moments: (Zhang and Gao, 2020)


• We might never be close to the true posterior distribution.



Variational inference 
• Advantages: 
• Scalable

• Fast


• Disadvantages: 
• Little theory on convergence

• Computationally complex



Summary

Conjugate priors


Sampling


Variational inference

Dimension      Expressivity     Efficiency  

Low

Low

High

Low

High

Varying

High

High

Low

High

Low

Low

Computational

Complexity



Break	time	

Hands-on	session:	http://bit.ly/43OLjUh

http://bit.ly/43OLjUh

